翻訳と辞書
Words near each other
・ Riemannian circle
・ Riemannian connection on a surface
・ Riemannian geometry
・ Riemannian manifold
・ Riemannian Penrose inequality
・ Riemannian submanifold
・ Riemannian submersion
・ Riemannian theory
・ Riemann–Hilbert correspondence
・ Riemann–Hilbert problem
・ Riemann–Hurwitz formula
・ Riemann–Lebesgue lemma
・ Riemann–Liouville integral
・ Riemann–Roch theorem
・ Riemann–Roch theorem for smooth manifolds
Riemann–Roch theorem for surfaces
・ Riemann–Siegel formula
・ Riemann–Siegel theta function
・ Riemann–Silberstein vector
・ Riemann–Stieltjes integral
・ Riemann–von Mangoldt formula
・ Riemenschneider
・ Riemenstalden
・ Riemer Calhoun
・ Riemer See
・ Riemer van der Velde
・ Riemerella anatipestifer
・ Riemke
・ Riemke Ensing
・ Riems


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Riemann–Roch theorem for surfaces : ウィキペディア英語版
Riemann–Roch theorem for surfaces
In mathematics, the Riemann–Roch theorem for surfaces describes the dimension of linear systems on an algebraic surface. The classical form of it was first given by , after preliminary versions of it were found by and . The sheaf-theoretic version is due to Hirzebruch.
==Statement==
One form of the Riemann–Roch theorem states that if ''D'' is a divisor on a non-singular projective surface then
:\chi(D) = \chi(0) +\tfrac D . (D - K) \,
where χ is the holomorphic Euler characteristic, the dot . is the intersection number, and ''K'' is the canonical divisor. The constant χ(0) is the holomorphic Euler characteristic of the trivial bundle, and is equal to 1 + ''p''''a'', where ''p''''a'' is the arithmetic genus of the surface. For comparison, the Riemann–Roch theorem for a curve states that χ(''D'') = χ(0) + deg(''D'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Riemann–Roch theorem for surfaces」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.